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1. Introduction

A wide range of materials properties can be understood by
modeling them as mass-spring networks, or graphs with con-
strained edge lengths, where sites, or vertices, are interacting
via harmonic springs or edge-length constraints. Examples
include auxetic phases of matter[1] and mechanical metamateri-
als.[2,3] This network representation contains topological and geo-
metrical information. The topology of a network determines how
sites are connected, while its geometry determines the position
of sites and in turn other geometrical properties such as bond
lengths and angles. Both geometrical and topological properties
of networks are crucial to control its response to mechanical
deformations, which determines the rigidity of that structure.[4]

It is, therefore, not surprising that much research has been
dedicated to tuning materials properties by modifying the

connectivity and geometry of networks.
Within the context of solid-state physics,
most studies have been focused on the
topological design of networks in which
bonds are arranged such that the network
response is optimized for a given mechan-
ical force/load.[5,6]

However, relatively less attention has
been given to the geometrical realization
of a network, i.e., the assignment of coor-
dinates to its sites in a given spatial dimen-
sion. In the study of geometric constraint
systems,[7] given a graph G with edge-
length constraints, the realizations p that
satisfy those constraints are called equiva-
lent frameworks (G, p). A given graph with
constrained edge lengths can have many
realizations. For example, consider two tri-

angles that share a common edge (four vertices and five edges).
Here, there are two realizations—one fully extended with no
edges that cross and the other folded about the common edge
shared by the two triangles. This gives a total of two realizations
which is an example of the more general case of an isostatic net-
work having an even number of realizations that is shown and
extensively used in this article.

The problem of finding network realizations has been applied
to several physical problems. The most well-known example is
the so-called “NMR problem” where pairwise distances between
atoms are found using nuclear magnetic resonance (NMR) spec-
troscopy[8] and the 3D protein conformation is inferred from the
data.[9] Other examples include survey and satellite imaging,[10]

localization of sensor networks,[11] and conformation control for
allostery.[12,13] As the bond lengths are assigned to specific bonds,
the problem is sometimes referred to as assigned distance
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problem known to be NP-hard,[14] while the problem of finding
realizations given only a list of bond lengths—that are not assigned
to specific bonds—is called the unassigned distance problem.[15]

The network representation of a material is useful for both crys-
talline and noncrystalline materials. The main difference is that
crystalline structures have only a single minimal energy conforma-
tion, while disordered systems have a rough energy landscape
with many local minima. Therefore, noncrystalline materials
can attain various conformations if such transitions are energeti-
cally accessible. In a large class, the transition corresponds to a
structural change in which atoms attain new positions, while
the connectivity (the atoms they interact with) and the bond lengths
remain unaltered, i.e., the conformations are in fact equivalent
frameworks. For example, the anomalous properties of glasses
such as silica at low temperature are attributed to the two-level
states (TLSs) in which the glass can tunnel between two conforma-
tions.[16–18] These conformational changes are believed to be local-
ized, consistent with the thermal energy available at about 1 K
where the anomalous specific heat is observed. However, after half
a century of intensive research on TLSs, the geometrical realiza-
tions, or equivalent frameworks, of these localized modes are still
elusive. The synthesis and imaging of silica bilayers[19,20] in recent
years has reinvigorated open problems in physics of glasses by
unveiling a structure which follows the continuous random
model[21,22] and makes the actual coordinates of atoms available,
albeit in two dimensions (2D). This newly available data on 2D
glasses makes the interface between theory and experiment a
lot easier; not least because visualization is so much easier in
two dimensions.

The remainder of this article is organized as follows. We first
review the fundamental concepts in rigidity and present the the-
orem that states an isostatic network has an even number of real-
izations. Then we describe several methods to find realizations of
an isostatic graph using a toy model, using constraint reduction
and Cayley parameterization. Lastly, we apply these methods to a
series of larger networks, generated computationally or experi-
mentally, to find their realizations and discuss the physics of
transition between such states.

2. Mathematical Background

We aim to find all realizations of a network or graph with vertices
connected by edges with given edge lengths. A realization is the
assignment of coordinates to vertices such that all edges satisfy
their given lengths. A graph together with a realization is called a
framework. Frameworks that satisfy the same set of edge lengths
are called equivalent. A realization is a solution to the set of edge
length equations. Let ðxi, yiÞ be the coordinates of vertex i in two
dimensions (2D). If vertices i and j are connected through an
edge with the length s, we can write

ðxi � xjÞ2 þ ðyi � yjÞ2 ¼ s2 (1)

Every edge in the graph has a corresponding edge length
equation. This is a geometric constraint problem that has been
studied extensively from multiple perspectives, from distance
geometry, to algebraic geometry and automated geometry to
structural or combinatorial rigidity, and arises in a wide variety

of applications. We refer a reader to a recent handbook for back-
ground, perspectives, and recent work.[7] An isostatic network
has the minimum number of independent constraints or equa-
tions to make the graph rigid, i.e., to ensure locally unique sol-
utions generically exist. It is this marginal state that separates
overconstrained (more constraints than necessary for minimal
rigidity) from underconstrained (fewer constraints than neces-
sary for rigidity). As mentioned earlier, in general, checking
whether a real solution exists to such a system of equations is
known to be NP-hard. This means that the source of the com-
plexity is not merely the number of solutions, which could be
exponentially many in the size of the system. In fact, even if there
were just a single solution, finding it may take exponential time.
Regardless of this complexity, it is possible to prove that a generic
isostatic framework has an even number of realizations.

This theorem is powerful as it suggests that glasses such as
silica have to have more than one realization with the same topol-
ogy (same set of edges and edge lengths). Now, note that the the-
orem guarantees the existence of such solutions, but the question
of their accessibility depends on the energy considerations. If the
rigid bars between vertices are replaced by springs, then there is
an energy barrier between the various realizations, whose mag-
nitude is relevant in physical process such as tunneling. In the
next section, we justify this theorem using a toy model and will
show how various realizations of an isostatic framework can be
found. To be more precise:[23]

Theorem 1: A finite generic isostatic framework is not globally
rigid, but has an even number of equivalent generic frameworks.
Each generic framework of the underlying graph is locally rigid.
(Equivalent generic networks have the same network topology
and bar lengths, and are infinitesimally rigid.)

Proof 1: This is essentially Theorem 5.9 from the study by
Hendrickson.[23] The evenness property is not explicitly stated
there, but is clear in the proof. Evenness is explicitly stated in
the proof of Theorem 1.14 from the study by Gortler et al.[24]

However, this theorem does not provide a way to access the sol-
utions. Each realization has exactly the same number of vertices
and the same connectivity table and bond lengths; however, the
embedding of the graph is different. These configurations are
not related by rigid motions such as translation and/or rotation.
An approach can be designed using the nature of an isostatic
framework which is on the verge of instability. The number of zero
eigenvalues of the dynamical matrix of an isostatic framework is
exactly equal to the number of trivial motions (or dimension of the
null space). Any other motion has a finite cost in energy, if vertices
are connected by springs, rather than bars, which, of course, sup-
presses any continuous deformations in an isostatic system. But if
a single constraint of an isostatic framework is removed, there is
one fewer equation of the form Equation (1), so now the null space
gains one extra dimension moving along which has zero energy
cost. In fact, it can be proven that the traversal along this nontrivial
eigenvector is continuous and leads to an even number of realiza-
tions with the same length on the removed bar. We state the afore-
mentioned observations as a theorem.

Theorem 2: If a single edge is removed from a finite generic
isostatic framework, the resulting mechanism has a configura-
tion space that is a closed, continuous curve, on which there
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are an even number of configurations in which the removed edge
returns to its original length.

Proof 2: See Theorems 5.8 and 5.9 in the study by
Hendrickson.[23]

3. Trihex: A Toy Model

Glasses such as silica (SiO2) and germenia (GeO2) are considered
as a network of corner-sharing tetrahedra. Recently, silica
bilayers have been synthesized[19,20] which are effectively a 2D
network of corner-sharing triangle.[25] These triangles are formed
with oxygens at their corners. The network has rings of many
sizes, but the mean ring size is six.[26] Therefore, we propose
a hexagon as a toy model: Trihex (Figure 1).

The Trihex has V¼ 9 vertices and E¼ 12 edges. To render
Trihex isostatic, anchored boundary condition are used and
the blue vertices are pinned (immobilized).[27] The pinned verti-
ces are placed generically (not on an equilateral triangle) and all
edges initially have almost, but not exactly, the same length. The
other three vertices on the surface are removed because they do
not change the rigidity of the network as each triangle is rigid.
As the set V has six unpinned vertices, this gives a set of
2N ¼ 2� 6 ¼ 12 nonlinear equations for Trihex to solve using
three pinned vertices whose coordinates are fixed. It is important
to note that simple ruler and compass-based algorithms, that
classify and find equivalent frameworks when the underlying
graphs are so-called tree-decomposable or quadratically solv-
able,[28–31] do not directly apply to Trihex.

4. The Single-Cut Algorithm

Theorem 2 can be directly written as a step-by-step single-cut
algorithm[32]:

Start from an isostatic network, i.e., a rigid network with no
redundant edge. The number of trivial motions depends on the
imposed boundary conditions. In a system with periodic bound-
ary conditions, only rigid translations are allowed. For anchored
boundary condition, no trivial motion exists, and there are exactly
2N equations of the form Equation (1).

Remove an edge from the isostatic network, resulting in a sys-
tem of 2N–1 equations and form its dynamical matrix. Find the

eigenvectors corresponding to zero eigenvalues (the null space).
Remove trivial motion eigenvectors to find the 1 internal degree
of freedom (dof ).

Eigenvector-following: Once the nontrivial direction is identi-
fied, move all sites along that direction with a small step size. The
smaller the step size, the smaller is the error in traversing the
closed curve in configuration space, i.e., the path that the system
takes in high dimensional space. Note that this motion does not
change the edge length of any other edge. Also use the dot prod-
uct of the previous and current directions to make sure we only
move forward in the configuration space.

Compute the dynamical matrix at the new point and repeat the
aforementioned process to traverse in the configuration space.
Meanwhile monitor the distance between the two vertices that
had their connecting edge removed. If we continuously move
through this 1D path, we eventually come back to the starting
point. Once we are back to the initial point, the sum of distances
from the center of mass (as a convenient metric) is plotted
against the length of the cut edge, for each point along the path.
This gives us a closed curve projected in 2D plane in which draw-
ing a vertical line will identify the original framework and its
equivalent frameworks in the configuration space.

A Python implementation of this algorithm can be found in
the RigidPy package.[33]The single-cut algorithm is illustrated in
the two parts of Figure 2.

4.1. Using the Single-Cut Algorithm to Find Equivalent Sphere
Packings

We tested the ability of the single-cut algorithm to find equivalent
configurations of frameworks using a large database of known
framework embeddings which were obtained from rigid unit
sphere packings of N ¼ 12, 13 spheres.[32] For N ¼ 12, the data-
base in the study by Holmes-Cerfon[32] contains 11980 distinct
unit sphere packings, of which there are 23 pairs with the same
adjacency matrix and therefore the same underlying framework
graph. We applied the single-cut algorithm to each of the
46 frameworks with multiple embeddings, breaking each single
bond in turn. For all frameworks the algorithm found the other
embedding, usually via several different single broken bonds.
For N ¼ 13, the database contains 98529 unit sphere packings
of which there are 474 pairs with the same adjacency matrix.
We tested all the frameworks with multiple embeddings, and
found four pairs of frameworks that could not reach their other
embedding by the single-cut algorithm. Interestingly, an addi-
tional two pairs (four frameworks) each led to new frameworks
that the algorithm in the study by Holmes-Cerfon[32] failed to
find. A pair of frameworks that cannot be converted to each other
via the single-cut algorithm is shown in Figure 3. These atomic
clusters are 3D and indeed Theorems 1 and 2 and the single-cut
algorithm apply in any dimension. The remaining examples in
this article are in two dimensions.

4.2. Double Cut

To find other realizations in this system, we designed more com-
plex schemes for removing edges. For example, the single-bond
cut can be modified to cutting two bonds, while another bond is

Figure 1. The toy model, Trihex, formed by six corner-sharing triangles pro-
posed to find properties of realizations of an isostatic network. The other
three nonpinned triangles are removed because each triangle is rigid.
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added. We tried different ways in connecting different sites, but
our analysis shows that these more complex schemes do not find
any new realizations. We do not find new solutions in these more
complex schemes, but even more complex schemes can be imag-
ined that perhaps might do so.

4.3. An Alternative to Address Incompleteness of Single Cut

It is helpful to look at the configurations of the Trihex where the
anchored vertices are close to being a unit-length equilateral
triangle and edge lengths are larger than 1/3, and smaller than
about 1/2. Otherwise, either the configuration or framework does
not exist, or it has several self-intersections which do not seem
physically realistic. As we will see, this allows for a great variation
in the shapes of equivalent frameworks.

First, we consider the nongeneric case when the anchored tri-
angle is exactly equilateral, which leads to some flexible frame-
works, although generic frameworks of the same graph are in
fact isostatic. Subsequently, we will consider generic perturba-
tions of an anchored triangle. In Figure 4, sample equivalent

Figure 2. (Top) A closed curve—whose points represent equivalent frame-
works or configurations of a 1-dof framework—projected on the 2D plane.
The vertical axis represents the average distance of all vertices from the
center of mass. The horizontal axis shows the distance between two ends
of the removed edge. The blue and the red asterisks denote the original
and alternative realizations, i.e., equivalent frameworks. Note that more
than 2 (but an even number) of such equivalent frameworks can be found
on a single closed curve (see section on CayMos). A vertical line, drawn at
the location of the original bond length, has two intersections with the
closed curve representing equivalent frameworks. (Bottom) The distance
of two ends of the removed edge versus iteration step by moving along the
path. The dashed horizontal line represents the original length. The aster-
isks correspond to the ones on the left.

Figure 3. A pair of frameworks with the same underlying graph, but dis-
tinct spatial embeddings, that cannot be converted to each other via the
single-cut algorithm. The embeddings differ in the locations of vertices
2 (green), 6 (cyan), and 1 (red). By breaking a single bond and flexing,
there is no way to interchange the positions of vertices 2 and 6; more flex-
ibility is required to interconvert the embeddings.

Figure 4. The closed path of the flexing Trihex for the case when the pinned
vertices form and equilateral triangle shown in red. The positions of the
sample configuration are represented by an hour on a clock. The central
two threefold symmetric configurations are rigid and not part of the flex.
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frameworks are displayed in the form of the numbers on a clock,
where each hour represents a particular configuration and there
is a natural flex of frameworks from each hour to the next, for-
ward or backward. The central hexagon in each of the flexible
configurations has the property that opposite sides are parallel.
All the dark edges have unit length. The two equivalent config-
urations in the center are rigid isostatic, and also infinitesimally
rigid configurations that have threefold rotational symmetry,
which we call threefold left and threefold right. They are not part
of the flexible cycle of configurations on the outside clock, but
they also represent realizations of the outside graph with the
same edge lengths and a connection is shown for each of these
to the particular odd hour configuration that share two of the
three triangle configurations that are the same. The change or
flex is seen by starting from the 12-o-clock configuration, and using
that the opposite sides of the hexagon are parallel it maintains that
property as it flexes. This is proved below. If you look at the path of
three edges from one vertex to the next, it is an example of a 4-bar
mechanism, and in the clock flex, each of the three 4-bar mecha-
nisms flexes their full cycle, and when the edges of the pinned tri-
angle are greater than the length of the inner edge length, the 4-bar
mechanisms consist of one connected component.

To prove that the clock mechanism works, see Figure 5.
We use the 1-o-clock position as a sample. The more general
position is very similar. We see that the vector sum Aþ Bþ C ¼
D represents the vectors of the 4-bar mechanism, where D is
the corresponding side of the regular pinned triangle. Let R
be the rotation to the right by 120�. Then RC þ RAþ RB ¼
RðC þ Aþ BÞ ¼ RD is the other side of the pinned triangle.
Applying this to other side, we can see how things close up.

We next show how this applies when the pinned triangle is
perturbed to a nonequilateral, generic triangle, while the other
unit bar lengths are fixed. The two threefold configurations
are infinitesimally rigid, and the whole framework is isostatic
with 9 vertices and 15 ¼ 2� 9� 3 bars. So, it has only the 0 equi-
librium (self ) stress. On the contrary, for perturbations of con-
figurations of the clock mechanism it is not so simple. Indeed,
there is an equilibrium stress that varies as the configuration
flexes, and in a sense, the stress “blocks” some of the infinitesi-
mal and actual motions.

For a perturbation of the pinned triangle, we may assume that
one of the edges of the corresponding equilateral triangle is the
same length, and each of the other two edge lengths either
increases or decreases some small amount. If the stress on those
lengths has the same sign as the displacement of the edge

lengths, that motion is restricted. But in any case, we can start
with one of the configurations along the path of the clock mech-
anism, and then look for another realization with the same per-
turbed edge lengths of the pinned triangle. Figure 6 is an
example of that process. Then fixing the new green nonequilat-
eral base triangle, we can then find two other realizations with
unit bar lengths on the dark colored bars which are perturbations
of the left and right threefold.

When the upper left configuration is flexed 6 h, we can approx-
imate that as well to get an exact Trihex with the same triangle
base as in the upper right. Thus, we get four configurations with
the same base altogether.

The aforementioned discussion indicates that there are vari-
ous other equivalent frameworks than those obtainable by
removing an edge and flexing the resulting framework. As there
is a finite mechanism nearby, or a critical configuration nearby,
with generic equilateral triangle of boundary vertices, that can be
used as a kind of guide path, walking around the clock to find
distant realizations with the same bar lengths. The idea is to
approximate the given framework with one with the nearest time
on the clock. For example, the framework in Figure 1 is roughly
at 7-O-clock, when the clock in Figure 4 is rotated 180� to match
the position of the base triangle. In fact, that is not all. It is pos-
sible to jump to either the left or right fold rather than to walk
around the clock and use that as the approximation.

In the next section, we present a formal method that fleshes
out these ideas.

Figure 5. This labels the directed edges of mechanism for the proof that
the clock mechanism is a mechanism.

Figure 6. Starting with the framework in the top left, which is near the
1-o-clock flexible configuration, we perturb the starting trihexagon to
get the framework on the upper right. We then find thee others as shown.
The thin circle is to indicate that the last bar length is of unit length
because the other bar lengths are of unit length by construction.
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4.4. Indexing and Finding Equivalent Frameworks Using Cayley
Parameters

Themethods mentioned earlier use two ideas. The first is finding
equivalent frameworks by removing one or more edges, and
exploring the configuration space of the resulting mechanism
with one or more degrees of freedom, to find other configura-
tions that satisfy the original edge lengths of the removed edges,
i.e., equivalent frameworks. The second is to classify or index the
configurations based on their “clock” position around critical
configurations.

These ideas are exploited in a formal method that has been
used in a variety of scenarios from computer-aided engineering
design to molecular modeling. Cayley parameterization (a type of
covering map or projection in the terminology of algebraic
topology) was introduced in the study by Sitharam and Gao,[34]

as a way of describing and computing configuration spaces of
flexible frameworks. The key idea is to use lengths of selected
nonedges as parameters or coordinates, to represent and traverse
the configuration space that could be disconnected in the usual
Cartesian coordinates (a branched covering space in the termi-
nology of algebraic topology). With sufficiently many judiciously
chosen Cayley parameters or nonedges whose addition makes
the framework minimally rigid or isostatic, we can efficiently
compute the finitely many possible Cartesian configurations
(inverse of the covering map) corresponding to each Cayley-
parameterized configuration (an element of the base space of
the covering projection). A bijection between Cayley configura-
tions and frameworks is achieved by adding enough Cayley
parameters, i.e., enough nonedges, so that the graph is globally
rigid, i.e., has a unique realization generically, given edge
lengths.

Here, we describe two algorithms based on Cayley parameter-
ization for finding all equivalent frameworks of a given frame-
work, or graph with fixed edge lengths.

The first is based on the results of previous studies,[35–38]

which provided an analysis of a common class of 1-dof mecha-
nisms that are obtained by removing an edge from the well-
studied class of tree-decomposable graphs, which include the
so-called Henneberg-I graphs.[39]

This class of graphs provides a natural classification or index-
ing of equivalent frameworks based on relative orientations, chir-
alities, or flips of certain triples of vertices. A flip vector of 1’s and
–1’s distinguishes equivalent isostatic frameworks. Two equiva-
lent isostatic frameworks whose flip vectors differ in a single
coordinate are on “opposite sides” of a critical configuration
of a 1-dof framework where the triple of vertices is collinear.
The isostatic framework minus a “base” edge yield the 1-dof
framework, and the Cayley configuration space of this 1-dof
framework is parameterized by the length of the removed base
edge, i.e., base nonedge. This Cayley configuration space has a
well-defined structure of intervals bounded by critical points.
Each interval could correspond to multiple connected component
curves that are generically smooth and are homeomorphic to a
circle. Certain pairs of flip vectors are guaranteed to belong to
different components, while others could belong to the same
component. Moreover, once the unique flip vector is given,
the isostatic framework with the specified length of the base

nonedge or Cayley parameter can be found easily using a simple
ruler and compass construction. The algorithm has been imple-
mented as an open-source software CayMos.

Trihex becomes a 1-dof tree-decomposable graph after remov-
ing one edge e, with a Cayley configuration space parameterized
by the length of a different base nonedge f, whose addition makes
the graph tree-decomposable. As the different connected compo-
nent curves of the configuration space are traced out for the dif-
ferent lengths of f, multiple equivalent frameworks, indexed by
multiple flip vectors, that attain the required length for e are
found. A webpage[40] illustrates CayMos analysis of the Trihex
for various ratios between the pinned boundary edge length
and the bond length. The two-component curves of a Trihex with
bond length half the pinned boundary edge length are shown in
Figure 7. Each component curve could have multiple equivalent
frameworks with different flip vectors, i.e., frameworks that
attain the required distance of the dropped edge.

The dropped edge e is ðv4, v6Þ. Each component curve is a pro-
jection of a smooth simple curve (each point represents a unique
configuration) living in 3D, parameterized by three Cayley
parameters, dashed nonedges whose addition makes the graph
globally rigid, i.e., generically has a unique realization given edge
lengths. The driving Cayley parameter or base nonedge is one of
the three dashed. Each colored portion of the curve represents a
different flip vector. Each component curve has multiple equiva-
lent frameworks with different flip vectors, i.e., frameworks that
attain the required distance of the dropped edge.

Figure 8 shows equivalent frameworks for Trihex found by
CayMos, for two different ratios between the edge length of

Figure 7. Trihex minus one edge 1-dof tree-decomposable graph’s Cayley
configuration space curves for bond length half of boundary edge length,
solved by CayMos. The dropped edge ðv4, v6Þ attains its required length
at multiple points on each curve, giving multiple equivalent frameworks.
See text for description.
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the pinned (nearly) equilateral boundary triangle and the (equal)
length of the remaining edges (Table 1, 2).

The next method extends and combines two well-known algo-
rithms. The first is the so-called decomposition–recombination
(DR)-planning algorithm[41–44] that recursively decomposes
minimally rigid, or isostatic graphs with edge-length constraints
so that only small constraint systems need to be solved simulta-
neously, and recombines their solutions[45–47] to get all equiva-
lent frameworks. The method of recombination provides an
indexing of frameworks around critical configurations.[48]

The second is the use of convex Cayley parameterizations.[34]

The existence of a convex Cayley configuration space is a robust
property of graphs underlying frameworks. For frameworks in
two dimensions, the graphs are so-called partial 2-trees.
Informally, complete 2-trees are constructed by pasting triangles
together on edges, and partial 2-trees are subgraphs of complete
2-trees. Such characterizations exist even for frameworks whose
bar lengths are in non-Euclidean, polyhedral norms, and are
strongly linked to the concept of flattenability[49,50] of graphs,
characterized by forbiddenminor subgraphs, for example, partial
2-trees are exactly those graphs that forbid the complete sub-
graphs on four vertices, or K4. Convex Cayley parameterization
has been used for analyzing sphere-based assembly configura-
tion spaces in previous studies,[51–53] further applied to predict-
ing crucial interactions in virus assembly in previous
studies.[54,55]

The idea is to drop sufficiently many edges from a glassy
framework (arbitrarily large versions of the Trihex), shown in
red in Figure 9, so that the remaining graph has a convex
Cayley configuration space (is a partial 2-tree) parameterized
by nonedge lengths shown in green. In this case, the boundary
vertices are not pinned; instead, boundary edges are judiciously
added to make the graph minimally rigid or isostatic while ensur-
ing the convex Cayley property. This can be achieved for a class of
planar graphs encompassing corner-sharing triangular or glassy
graphs. Figure 9 and 10 have light colored lines showing the
chosen boundary edges. Importantly, the resulting 2-tree has a
simple DR plan, called a flex DR plan because it requires drop-
ping and adding edges. Furthermore, the flex DR plan permits
sequential solving of univariate quadratic equations correspond-
ing to the dropped edges one by one, i.e., flex 1, except for a
single, final high degree univariate polynomial. This further
permits the indexing of equivalent realizations around critical

v0

v1

v(a) (b)
2

v3

v4

v5

v6

v7

v8

v0

v1

v2

v3

v4

v5

v6

v7

v8

Figure 8. Trihex frameworks for two different boundary-to-edge length
ratios, solved by CayMos.

Table 1. 22 solutions found for Trihex 8a.

Flip Base edge Solutions

– ðv2, v5Þ

4 ðv2, v5Þ

7 ðv2, v5Þ

8 ðv2, v5Þ

3,4 ðv2, v5Þ

7, 8 ðv0, v4Þ

3, 4, 7 ðv0, v4Þ
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configurations. These key ideas are based on graph theory
(to find the flex 1 DR plan) and numerical solution of a system
of quadratic equations by solving a sequence of univariate qua-
dratic equations (with a Cayley parameter as variable) followed by
a single univariate equation of large degree (in a final Cayley
parameter). The resulting algorithm to find the solution corre-
sponding to a given index runs in polynomial time in the size
of the glassy system and the required accuracy and is fleshed
out in upcoming articles.[56,57]

4.5. Changing Ratio of Edge Lengths to Distance between
Pinned Boundary Vertices

It is trivial that if edge lengths are chosen so short, the triangles
cannot span the distance between the pinned vertices. Therefore at
that limit, the set of Equation (1) has no solution. If we take the
vertices with coordinates, shown in Figure 1, as an initial structure
(where the distance between the pinned vertices is l0 � 1.0; recall
that the pins are not located on an equilateral triangle and therefore
l0 is in fact the average distance between the pins), we are inter-
ested in counting the total number of realizations for a given edge
length. As the Trihex is a small enough example, the complexity
advantage of the methods of the previous sections, e.g., CayMos, is
not as crucial. So, the realizations are found by directly solving

Equation (1) for uniform edge lengths ranging from 0.34 to 2.
The exact solutions are obtained through the function “NSolve”
in Mathematica. The pinned boundary conditions is convenient
because no trivial translation or rotation is present.[27] Figure 11
shows the number of real solutions for a given s. The red line
shows the total number of distinct complex solutions for the
Trihex, which is fixed and equal to 112 computed using
Magma.[58] This number is independent of the chosen edge length
and is the upper bound on the number of realizations. By changing
the edge length, some but not all of complex solutions become real.

The first real solutions appear to be a single point at edge
length �0.346 (see Figure 11). This is an interesting point as
it seems there exists only one solution and the theorem is vio-
lated but in fact there are two solutions at this limit although

Table 1. Continued.

Flip Base edge Solutions

3, 4, 8 ðv0, v4Þ

Table 2. Four solutions found for Trihex 8b.

Flip Base edge Solutions

– ðv0, v4Þ

3 ðv0, v4Þ

0

1
2

3

4
5

6

7
8

9

10
11

12

13
14

15

16

(a)

(b)

17
19

20
22

23
25

26
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17

19
20

22
23

25
26

Figure 9. We construct the flex 1 DR plan of a hexagonal lattice manually
by applying two actions to the graph: 1) add boundary edges (gray) so that
the graph is infinitesimally rigid; 2) drop some of the edges and add some
Cayley parameters (green) so that the new graph becomes a two-tree.
During recombination, we add back those dropped edges (red, or pink
if boundaries), i.e., we solve for the green Cayley parameter lengths that
achieve the given red (and black) edge lengths. An important property of a
DR plan of flex 1 is that we are able to solve for one red edge at a time.
Empirically, we usually apply three actions by starting from a small sub-
graph and expand it by adding one Cayley parameter and drop one original
edge. When reach the boundary we add a boundary edge if we cannot con-
struct a two-tree by adding only one Cayley parameter.
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infinitesimally close. This is the signature of a fully stretched
network which has the maximum possible volume or the lowest
density. From this point of view, the problem is also related to the
flexibility window in glasses where naturally occurring glasses
are found near their low-density limit.[59,60] As we increase the
edge length s, the two infinitesimally close solutions diverge
and quickly two new solutions join the previous solutions.
The number of realizations in Figure 11 generally increases
up to a maximum number. In fact, two sharp increases happen
at�0.5 and�1.0 because the pins are roughly l0 � 1.0 unit apart.
Therefore, when l0 is roughly an integer multiple of the edge
length of the triangles, the triangles can tightly fit together
and new solutions appear. Figure 12 shows some realizations
(out of 76 possible realizations) for the edge length 1.0.

After reaching a maximum of 104 realizations, the number of
solutions rapidly drops. Our numerical experiments show that
a subset of solutions survives even at very large edge lengths
(high density) and the number of realizations reaches a plateau
of 44 solutions. Figure 13 lists these 44 states when the edge
length is set to 100, but Fig. 11 shows the number of realizations
up to s ¼ 2. Many solutions in this regime are related by an
approximate mirror symmetry, as we expect the three blue pins

Figure 10. The six realizations with different flip vectors we found by the DR plan solver given Figure 9 as the input. The flip vectors are shown below each
realization. The overall error of the dropped edges is 0.07%� 0.21%.

Figure 11. Number of realizations of Trihex shown in Figure 1 by varying
edge length in the units that the distance between pins l0 ¼ 1. The hori-
zontal red line shows the total number of complex solutions which is equal
to 112. The number of solutions increases rapidly when the edge lengths
are half and equal to the pins distance.
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to be coincident and the equilateral triangles are roughly
arranged around a central point.

Although it is pedagogic to inspect the individual solutions
visually, we need to distinguish various realizations with the
same edge lengths. This also helps to track (follow continuously)
how solutions at a given edge length from the previous solutions
with smaller edge lengths. We choose the mean distance of ver-
tices from the centroid of the pinned vertices as the metric.

If we plot this metric versus the edge length ratio for each real-
ization, the result is the trajectories in Figure 14, showing how
some solutions persist for a long range but others disappear.
These trajectories represent solutions to a different set of equa-
tions than the 2N � 1 equations of the form Equation (1) whose
solutions form the closed curves of the 1-dof mechanisms given
by the single-cut or CayMos algorithms. This system has 2N
equations of the form Equation (1) for the bonds, but has an extra
variable s, representing the bond length (boundary edge length is
fixed due to pinned vertices). Red and green lines, respectively,
show the linear and quadratic fit to the persistent paths, which
shows an intermediate growth rate. Previously, we discussed that
there is a sharp increase in the number of realizations at s around
0.5 and 1.0. Figure 14 shows that along those values, there is a
tremendous amount of activity and a large set of solutions are
only present in a small region of edge lengths.

The complexity of paths in Figure 14 makes it certainly con-
structive to look at specific regions of edge length in more detail.
Our observations show that new solutions always come in as a
pair. Based on the results, we have observed three mechanisms
for appearance/disappearance of solutions: simple closed trajec-
tories, open trajectories, and retrogrades. Examples of simple
closed and open trajectories are given in Figure 15. Open trajec-
tories are the persistent trajectories that continue to exist even at
very large edge lengths. A retrograde is a trajectory that bends

backward which is a disappearance mechanism; an example is
given in the right panel of Figure 16. This leads to more complex
circuits replacing the simple loop in upper part of Figure 2. For
the retrograde there can be four intercepts and it is clear that any

Figure 12. Some of the realizations with the edge length equal to s ¼ 1.0.

Figure 13. The 44 solutions in the large edge length limit where the edge
length s is set to 100. Similar solutions are related by mirror symmetry but
not rotation. The first two realizations are colored to emphasize that
although the graphs look alike, different vertices have occupied the same
coordinates and therefore they count as two distinct realizations.

Figure 14. The mean distance of vertices from the centroid of the pinned
vertices vs. the edge lengths. The mean distance scales quadratically
(green) not linearly (red). The two curves are fitted to the topmost points
with edge lengths s between 1.1 and 1.4 but are extrapolated to the outside
of this window.
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closed loop will have an even number of intercepts, consistent
with Theorem 1. However, we have found no evidence of bifur-
cations [61,62] (Figure 16, left panel).

4.6. Energy Barriers

The discussion in the previous section showed that different real-
izations of an isostatic network can be found by solving edge
length equations. Realizations of a framework are thought to
be related to tunneling states in glasses. Figure 17 shows four
realizations of Trihex at s � 0.348. Their corresponding points

Figure 15. Open trajectories (top) and simple closed trajectories (bottom)
are two ways in which realizations appear and disappear. The upper panel
depicts the initial solutions at the low-density limit. Note that first two sol-
utions emerge and then they diverge while at a secondary point; a new
trajectory of solutions appears. In the lower, a pair of solution gradually
converges and finally forms a close loop.

Figure 16. The left panel is a bifurcation which we have never observed.
The right panel is a “retrograde” which is an alternative way of losing
solutions, which we do observe for the Trihex.

Figure 17. The four solutions with the edge length equal to �0.3477
marked with red asterisks. The solutions are numbered from the smallest
mean distance from the centroid (y-axis) to the largest. The solutions on
the same trajectory show a small displacement but a more significant
motion is involved among the solutions from the different trajectories.
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are marked by red stars in the left plot. The amount of energy in
transition from one state to another is a way of classifying sets of
states. Note that the landscape has no minimum except the listed
four solutions. We perform a linear interpolation between two
given states. Let s1 and s2 be two solutions in the configuration
space. We write

sðλÞ ¼ s1 þ
�
λþ 1

2

�
· ðs2 � s1Þ (2)

Assuming bonds are harmonic springs with spring constant
equal to unity, the energy can be found as a function of λ, where
λ ¼ � 1

2 ,
1
2 correspond to the two states. We can think of two

paths on this plot as two trajectories of frameworks. The equiva-
lent frameworks 1 and 4 belong to the first trajectories, while
2 and 3 lie on the second trajectory which exists only when
s ≥ 0.347. The pair of frameworks that belong to the same tra-
jectory indeed has very similar configurations. In fact, the largest
difference between the pairs is the reflection of the top connect-
ing edge along horizontal axis. For the pairs that do not belong to
the same trajectory, the motion involves the significant rotation
of the bottom triangle. If we would assume that the edges are
harmonic springs and not fixed-lengths bars, the energy path
connecting the pairs of realizations on different branches has
a much higher energy barrier compared with that of the pairs
on the same branch. Note that the whole energy landscape of
Trihex at this edge length has only four minima. The nice feature
of the landscape of Trihex is that the global minimum energy is
exactly zero (Figure 18).

This energy perspective makes an important bridge between
Trihex examples and glasses. If this picture from studying Trihex
remains intact in glasses, we expect to see that solutions play
different roles depending on which branch they belong.
Figure 17 is particularly important because the experimental den-
sity of glasses is close to the low-density edge. So, we expect the
discussion in this section would somewhat generalize to the
2D glasses. But as discussed, solving edge length equations is
computationally expensive for a large system. On the contrary,
two-level systems in glasses are rare. To have the slightest hope
of finding a tunneling state, we need to study systems that are

considerably larger than Trihex. This makes it inevitable to
design an alternative approach to find realizations of a frame-
work starting from already available information.

4.7. 2D Glasses and Jammed Networks

Trihex serves as an illuminating toy model to present the main
ideas about the existence of multiple realizations for an isostatic
network and techniques to find such realizations. However, these
methods are categorically applicable to the networks inspired by
or modeled directly from materials such as network glasses or
jammed granular packing. Such materials are either at or very
close to the isostatic states and their behavior is significantly
influenced by their rigidity.[59,60,63] But our main concern here
is to establish a link between the multiplicity of material realiza-
tions and their physical properties, specifically the existence of
the tunneling modes in such materials.

In the case of glasses, we are focused on those glasses that can
be modeled as a network of corner-sharing tetrahedra in 3D or
triangles in 2D. An example of the former is SiO2 or GeO2 and of
the latter is a silica bilayer which, although, is 3D dimensional,
but it can be seen as two mirroring layers of 1 atom thick of
oxygens connected through bridging atoms to complete the
chemical bonds.[25]

In 2D glasses, every atom/vertex is fourfold coordinated
(four shared constraints), but as each vertex has two degrees
of freedom (translational degrees of freedom), 2D glasses are
locally isostatic.[27] However, boundary conditions determine
the global rigidity of the framework. For networks extracted from
the experimental data, atoms on the surface are not fully con-
nected and anchored/pinned boundary conditions are necessary
and sufficient to render the system isostatic.[27] For material net-
works made using computer simulations, the boundary condi-
tions are periodic which means such 2D systems contain two
redundant bonds which must be removed to render the network
isostatic.

These computer-generated networks are prepared using
Wooten–Winer–Weaire (WWW) algorithm with the periodic
boundary conditions while ensuring that the ring distribution
and the area of polygons are in agreement with the experimental

Figure 18. The energy landscape of transition states between various realizations of Trihex, found by linear interpolation (Equation (2)) between the
realizations shown in Figure 17. The inset box shows the height of the energy barrier in the units that spring constant is set to unity. The inset figure shows
the two solutions indicated by red asterisks. The energy barrier between the realizations on the same branch is significantly smaller than that of the
realizations on different branches.

www.advancedsciencenews.com www.pss-b.com

Phys. Status Solidi B 2021, 2000555 2000555 (12 of 17) © 2021 Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.pss-b.com


data.[64,65] As a consequence, the edge lengths are no longer
exactly equal and 2D glasses satisfy a stronger definition of being
generic. Similar to Trihex, the structure is in mechanical equi-
librium; all edges are assumed to be harmonic springs initially
at their rest lengths and the dynamical matrix is positive
semidefinite.

In the case of granular networks, grains are often modeled as
an athermal packing of circles/spheres interacting via a Hookian
or Hertzian potential. To model such packings, we use the stan-
dard protocols that are common in jamming community. We
start with a random distribution of bidisperse (0.5:1, 0.5:1.4)
circles (to prevent crystallization), and we rescale all the radii uni-
formly to set any desired packing density ϕ. The energy of the
system, given by Equation (3), (where ρij is the distance between
nodes i and j and σij is the sum of their radii) is then minimized
by a standard FIRE algorithm[66] using the pyCudaPacking pack-
age, developed by Corwin et al.[67,68]

E ¼
X
ij

�
1� ρij

σij

�
2
Θ
�
1� ρij

σij

�
(3)

where Θ is the Heaviside step function to ensure that only over-
lapping circles are included in energy.

If the packing density is high enough (ϕ > 0.84), the system
will have several states of self-stress or redundant contacts. By
decreasing the packing density quasi-statically, the system
reaches a critically jammed state with zero pressure and one state
of self-stress. This system can then be mapped to a network by
replacing the center of mass of each circle with a node and replac-
ing any nonezero overlap between neighboring particles with a
bond between their corresponding nodes. Such a network has
one bond in excess of isostaticity. By removing any one bond
randomly, one can make an isostatic network.

Once a system is at the isostatic point, in principle, the same
techniques used to find realizations of a Trihex are also applica-
ble to material networks. However, such networks differ from
Trihex in two significant ways. First, material networks contain
many possible atomic arrangements which lead to various
couplings among atoms in the set of edge length equations
(Equation (1)). While Trihex is essentially a ring of triangles
forming a hexagon, in experimental samples ring size varies
from 4 to 8[65] which are distributed nonrandomly on a plane.[26]

Second, 2D glasses are generally much larger than Trihex and
it might not be computationally feasible to apply the techniques
directly. In fact, solving the set of edge length equations
(Equation (1)) exactly is practically impossible for systems as
large as 2D glasses with N ≥ Oð102Þ which, in turn, means
for larger systems the complete set of solutions and their evolv-
ing on branches are inaccessible.

The alternative method, the single-cut algorithm, is guaran-
teed to provide new realization(s) but is not an exhaustive
method and some of the existing solutions will be unreachable.
In this method, we need to compute the null space (the eigen-
vectors corresponding to zero eigenvalue) of a matrix of size
ðdNÞ2, where d is the spatial dimensions and N is the number
of vertices. Even if finding the null space can be done efficiently
by avoiding diagonalizing the entire matrix, there is some error
associated with movingN atoms along nontrivial zero-mode. It is
possible that the path would not be closed (the system would not

return to its original conformation) due to accumulation of
errors. Therefore, either the step size should be chosen suffi-
ciently small to ensure the path is smooth or frequent energy
minimizations are necessary along the path; both of which are
expensive.

Therefore, we slightly modify the single-cut algorithm to
find the alternative realizations of large isostatic networks. As
the existence of the second realization is guaranteed, we take
fairly large steps along the nontrivial zero-eigenvalue eigenvector
alternative. In addition, it is not necessary to complete the curve
in configuration space exactly to calculate the thermal properties.
Therefore, once the curve intersects the vertical line denoting the
original length of the cut edge, we have found a second realiza-
tion and the path traversal can be stopped early. However,
because of the larger steps along the curve, the position of verti-
ces and subsequently the edge lengths have large errors which
means the conformation has not returned exactly to its original
set of edge lengths. But as the conformation is close enough to
the energy basin, we only refine the last conformation by an
extensive energy minimization to ensure that edge lengths are
equal to their original values (Figure 19).

If the curve is complex enough, it contains more than two real-
izations. Based on the modified scheme, if the curve traversal
is stopped after finding the first solution, we might miss a whole
set of solutions. To address this concern, we note that glasses
are found at the extreme of density (edge of the flexibility
window).[59] At this limit, only two solutions are expected, similar

Figure 19. The curve found by applying the modified single-cut algorithm
to a 2D glass, in which the path traversal is stopped upon finding a solu-
tion. Fairly large steps are taken along the eigenvector with zero eigenvalue
as is evident from the curve roughness. The vertical axis represents the
total distance of all vertices from the center of mass, while the horizontal
axis shows the distance between two ends of the removed edge. The red
asterisk at the bottom denotes the original network and the top asterisk
shows the alternative solution found by the path traversal. The arrow is
drawn to emphasize the fact that the real solution (indicated by the blue
asterisk) with no error in the edge lengths does not exactly lie on the drawn
curve in configuration space and further energy minimization is required
to find the correct coordinates.
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to Trihex example where at the maximal density point only two
solutions existed. We tested the validity of this argument by
applying the original single-cut algorithm on two 2D networks
(N¼ 48 and 300) by removing all edges iteratively. It was
observed that all closed curves give two and only two distinct
solutions independent of which bond is removed.

After applying the modified single-cut algorithm, two realiza-
tions of a 2D glass are available; they have the same exact topol-
ogy and bond lengths, but the vertices are displaced between the
two states. The amount of this displacement determines whether
the conformations are in fact the tunneling states. Anomalous
specific heat is observed at temperatures about 1 K, where the
available energy is not sufficient for the displacement of a large
group of atoms over a long distance. Therefore, it is expected that
atomic displacements in a tunneling state are relatively localized.
To characterize to what extent the displacements between two
conformations are localized, we use the participation ratio (PR).
If an atom i is displaced by the vector ui between two conforma-
tions, PR is defined as

PR ¼ ðPN
i¼1 juij2Þ2

N
PN

i¼1 juij4
(4)

For a perfectly delocalized mode, juij � 1=
ffiffiffiffi
N

p
and PR � 1.

For a completely localized mode, juij � δij, PR � N�1. Hence,
a small value of PR is the signature of a localized mode. In
the case of tunneling modes, it is expected that by increasing
the system sizeN, the fraction of atoms participating in the mode
decreases.

In addition to the locality of the displacement, it is essential to
measure the significance of the atomic displacements in the limit
of large systems. For a conformation to be considered a tunnel-
ing state, the atomic displacements should be significantly larger
than zero-point motion. Assuming a harmonic oscillator, the
zero-point amplitude x0 is of order of

x0 �
ffiffiffiffiffiffiffiffi
ℏ
mω

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�34

10�26 � 1014

s
¼ 10�11 m ¼ 0.1 Å (5)

for an oxygen atom. For an O─O bond length of 2.6 Å, x0 � 10�2

is the unit of the bond length. If the typical motion of the atoms
measured by their mean displacement N�1 P juij is less than x0,
such motions are not relevant to the tunneling states but, never-
theless, they are mathematically correct and give rise to other
realizations.

To quantify the atomic displacements and propitiation ratio in
large systems, we prepare four networks of corner-sharing trian-
gles under periodic boundary conditions with varying size
N ¼ 48, 300, 1254, 5016 and randomly remove two edges to satisfy
the isostaticity condition. By applying the modified single-edge-cut
algorithm, the corresponding second realizations are found. This
allows us to study the behavior of the PR and the mean displace-
ment of vertices as a function of the number of particles.

Table 3 shows the results for the mean displacement of atoms
and their PR. The total displacement

P juij increases slightly by
system size, but the average displacement of a typical particleP juij=N generally decreases. But regardless of N, the mean dis-
placement is smaller than that of the zero-point motion x0 and
hence this motion cannot be representative of a tunneling state.

In addition, all networks exhibit modes in which about �45% of
all vertices are displaced in the system. Such an extended mode
cannot be a tunneling state because in the limit of Avogadro
number of atoms, a massive number of atoms should be
involved in such states which are not energetically favorable.
Unfortunately, it seems that the single-cut algorithm is not able
to find realizations that are sufficiently distant from the initial
realizations (evidenced by vanishingly small juij values) and suf-
ficiently localized (evidenced by the constant PR=N value).

Although from the localization and displacement considera-
tions, it is evident that the found realizations cannot account
for the tunneling states; nevertheless, it would be insightful to
study their thermal properties. For each system size, we can form
a double-well potential where each realizaion sits at one of the
energy minima. For every N, the energy pathway is found by
the linear interpolation (Equation (2)) between the two realiza-
tions with zero energy. The height of the energy barrier Vb

can be estimated from the interpolated curve, while the well sep-
aration d is calculated as the root-mean-square deviation (RMSD)
of atomic positions.

Figure 20 shows an example of a double-well potential derived
from the system withN ¼ 300 atoms. The black points are found
using Equation (2), while the red line is a fourth-order polyno-
mial fit to these points.[69] The two blue lines are the harmonic

Table 3. The magnitude of displacements in the unit of the edge length
found in simulations for different system sizes, N.

N
P juij

P juij=N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP juij2=N

p
PR

48 0.09 1.89� 10�3 2.12� 10�3 0.44

300 1.47 4.89� 10�3 5.80� 10�3 0.41

1254 2.03 1.62� 10�3 1.84� 10�3 0.47

5016 2.94 0.59� 10�3 0.67� 10�3 0.46

Figure 20. The double-well potential found by linear interpolation between
the two realizations forN ¼ 300. The black circles are found by linear inter-
polation; the red line is a fourth-order polynomial fit to the data. The blue
curves show the harmonic approximations for two minima.
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approximations around two equilibrium realizations. The prob-
ability of the tunneling scales as e�λ, where λ is the tunneling
parameter, is defined by the following equation (derived from
the ratio of kinetic and potential energies)

λ ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffi
2mVb

ℏ2

r
(6)

where m is the mass of an oxygen atom (see Appendix B in the
study by Sadjadi[69] for the derivation and a detailed discussion
on the significance of the tunneling parameter).

Table 4 shows the characteristics of the double-well potential
for four systems in SI units. The barrier height (Vb) of all systems
is a very small value which means the double-well is essentially
flat in the middle. The well separation d is also very small and at
most about 5% of O─O bond length and λ shows a somewhat
monotonic decrease with the system size (to find the exact depen-
dence of the values on N more samples should be used).

Tmax, in Table 4, denotes the temperature at which the specific
heat of a two-level system is maximum. To find this temperature,
we solved the Schrödinger’s equation numerically using the
embedding method (Ref. [70] and Appendix C in the study by
Sadjadi[69]) for the double-well potential in Figure 20 and found
its specific heat using energy levels. In general, Tmax happens to
be at about �10 K which is much higher than the range of tem-
peratures at which the tunneling states are assumed to be active.

We also repeated the same calculations in 3D glasses, but very
similar results were obtained. However, as it was discussed
earlier in this section, packing of granular materials is another
network matter which can be studied using this framework.
In addition, because these networks are essentially different from
networks glasses in terms of ring distribution, preparation
method, and so on, they might shed light on the nature of multi-
ple realizations and possibly tunneling states from a different
perspective.

Figure 21 shows an example of a computer-generated jammed
packing with 247 vertices in which two realizations (original
conformation and alternative realization found by the modified
single-cut algorithm) are superimposed. As it is shown, in some
regions the displacements are more pronounced. However, com-
pared with network glasses, the mean displacement is about one
order of magnitude smaller.

The jammed packings are generated by minimizing the over-
lap among circles in contact. In the original network, all overlaps
are smaller than a prespecified threshold. To find the alternative
realization, however, the interaction between soft disks is
replaced by harmonic springs. Therefore, both realizations have
zero energy if interactions are harmonic springs since all edge
lengths are equal but since adjacent vertices can also move, disks

that were previously nonoverlapping can intersect leading to
additional energy or the system can undergo an unjamming pro-
cess. Hence, an important question is whether the alternative
realization is at energy minima if the interactions are based
on the overlapping soft disks. In our tests, we observed that sec-
ond realizations of jammed systems have generally large overlaps
between disks, but we have observed some examples in which
even alternative realizations are jammed and at the energy mini-
mum or very close to it.

To draw a comparison between Trihex and 2D glasses, it
seems that the single-cut algorithm can only find solutions that
belong to the same connected component while realizations on
other connected components are energetically inaccessible
because they contain motions of larger units such as a rigid tri-
angle (or tetrahedron). Although we think such branches exist in
glasses, it is not computationally feasible to find all the connected
components for such large systems similar to Trihex.

It is worth noting that the aforementioned discussion can be
directly applied to bulk glasses. We repeated the modified single-
edge-cut algorithm for various silica structures in three dimen-
sions. The only modification required in 3D is that three edges
need to be removed to reach the isostatic point. Our results for
bulk (3D) glasses were very similar to the 2D case.

4.8. Questions

There are a number of important open questions that we list here
that require this work to be examined in a larger context. The
questions are general and go beyond the models considered
in this article.

The maximum number of distinct solutions for the Trihex is
112. Note that Mathematica often gives the same solution multi-
ple times. Where does this number come from? CayMos theory
gives an upper bound of 128. Using numerology it is 27 � 24.
Note that the problem cannot be reduced to a single polynomial

Table 4. Characteristics of double-well potentials in SI units for four
different system sizes, N.

N Vb [J] Tb [K] d [Å] λ Tmax ½K�
48 9.45� 10�27 6.84� 10�4 0.04 0.0012 16

300 2.79� 10�24 2� 10�1 0.30 0.10 12

1254 1.44� 10�25 1.04� 10�2 0.17 0.02 5

5016 3.84� 10�27 2.78� 10�4 0.12 0.0025 23

Figure 21. A jammed circle packing. In this representation, circles are
replaced by their center. The original network is drawn with blue lines,
while the equivalent configuration found by modified single-cut algorithm
is shown in red.
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where the number of real solutions is always less than or equal to
the degree of the polynomial.

Why is nothing more complex than an open or closed retro-
grade trajectory found in all the examples here?

Why are the trajectories all “smooth” with no singularities?
This can, however, be proved in the generic case for the closed
curves obtained in single-cut and CayMos algorithms, which are
configuration spaces of 1-dof mechanisms.

How general is this scheme?
Why are there no bifurcations in the solutions?

5. Discussion and Conclusion

Themain purpose of this collaboration is the present Theorems 1
and 2 and the single-cut algorithm in a straightforward way so
that it is accessible for future work. These are powerful state-
ments about isostatic systems that we have just begun to explore
here. It is hoped that the reader can see the potential and will
pursue these methods further. We have taken the first steps with
atomic clusters in three dimensions, and with tunneling modes
in glasses and jammed systems in two dimensions. We empha-
size again that these approaches work in any dimension. The
emphasis here on two dimensions is for simplicity and for ease
of visualization. Theorem 1 is counter-intuitive at first sight, but
becomes very natural when the circuit associated with a single
cut (see Figure 2) is understood. We have shown that modestly
large systems behave in the same way as smaller systems, but the
limit of large systems (tending to infinite size) is very different.
This is important for solid-state problems where systems have a
size of the order of Avogadro’s number (�1024) and this has
important implications for the origin of tunneling states in
glasses. Indeed, “more is different”.[71]
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